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ABSTRACT

The game is atwo-person zero-sum game. On each play, eachplayer selects
any point on aline of finite length. The payoff is a trapezoidal function of the sep-
aration between the two selected points; it isconstant for separations from zero to
R r changes linearly between Rl and R2, and iszero for separations greater than R2.

The derivation and proof of the solution are interesting due to the discontinuities
in the slope of the payoff function. The solution includes the special cases of
triangular (Rl = 0) and rectangular(R1 E R2) payoff functions. The gameisrelated

to search theory in its applicability to the barrier problem. Uniform distribution
along the barrier is not in general an optimal strategy for either the maximizer
(detector) or the avoider (transitor). In selecting optimal strategies the detector
must have more information on the payoff function (lateral range curve) than is
required by the transitor,

1
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I. The Game
A solution is presented to the following two-person, zero-sum game:

Each player chooses any point on a line of definite length. The payoff is
a sing.¢-vaiued, non-negative function of the distance along the line between the
two points, having the shape of a trapezoid symmetrical about zero separation.

In analogy with the physical problem of a detection barrier, the payoff
function will be called the lateral range curve (LRC), the maximizing player will
be called the detector, and the minimizing player will be called the transitor.
However, the game is more general in that, for instance, the payoff could just as
well represent capture or damage, and the dimension of the line could just as well
be time as distance. The game takes its name from the fact that the aim of the
minimizer will always be to avoid the maximizer.

The optimal strategies which are presented as a solution to the game with a
trapezoidal LRC will also be solutions for the special cases:

(1) definite range. or rectangular, LRC (upper and lower bases of trapezoid
are equal) and (2) triangular LRC (upper base equal to zero). For the definite
range LRC an alternate solution will also be given. Some special properties of
the trapezoidal solution applied to the triangular LRC will be pointed out.

Although the rules of the game allow both players to know the LRC, it will
be seen that, in order to apply the trapezoidal strategies, the transitor requires
less information thar does the detector. It is of course assumed that neither
player knows the position chosen by his opponent on any one play.

II. Definiticns of Symbols

The lateral range curve (LRC) is given by,
P (r) = C (constant), r s Rl’

R2-r

Pl
R2 Rl'RlerR

2,
P(c)=0 » r> Ry

in which r {s the separation between the transitor and the detector.

R
W = P(r)dr=C (R +R,).
-R2

In the detection problem analogy, W is the sweep width. A quantity that will
appear in the solution is Z, which is defined as

Z = L Mod (¢) = L Mod (R, + R,),
in which L is the length of the line upon which the game is played. N is the
integral number of times that w/c will go into L,
N=bk& o ded
w/c R1+R2
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III. The Detector Strategy

The detector strategy for a trapezoidal LRC is a mixed strategy described
by the following distribution of points. Measured from one end of the game line,
there is a strategy point at y and at L-y for each value of y shown in table I.
The frequency (probability of selection on each play) of each strategy point is
given in table I opposite the corresponding value of y.

TABLE I
THE TRAPEZOIDA!. DETECTOR STRATEGY

y Frequency
Rl (N+1)/(N+1)(N+2)
Rl+W/C N/ (N+1)(N+2)
Rl +2 W/C (N-1)/(N+ 1) (N+2)
Rl+3W/C (N-2)/(N+1)(N+2)
Rl;NW/c 1/ (N+1)(N+2)

Note that the largest value of y, (R1 + NW/C), will be greater than L if
R1 >Z. This is not a permissible strategy point since it is off of the game line.
In this case a solution is obtained by letting the largest value of y be L instead of
R1 + NW/C, and letting the frequency of this point remain equal to 1/(N + 1) (N + 2)

IV. The Transitor Strategy

The transitor strategy also consists of a set of points with corresponding
frequencies. Measures from one end of the game line, there is a strategy point
at X and at L - X for each value of X shown in table II. Again, the corresponding
frequencies are shown opposite each value of X.

TABLE II
THE TRAPEZOIDAL TRANSITOR STRATEGY
X Frequency
0 (N +1)/(N + 1) (N + 2)
w/C N /(N+1) (N+2)
2W/C (N - 1)/(N + 1) (N + 2)
3W/C (N - 2)/(N + 1) (N + 2)
NW/C 1 J(N+1)(N+2)
4
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We see that the transitor requires less information about the LRC than does
the detector to apply this strategy. The detector must know Rl and R2 whereas

the transitor need only know their sum, R1 + R2 = W/C.

Since the transitor strategy is independent of Rl’ we can show a completely

general plot of the transitor trapezoida! strategy as a function of W/CL. In
figure 1 the transitor strategy points are indicated by the solid lines. In the
special case of R1 = 0 (triangular LRC) the transitor ard detector strategies

are identical. The solid lines of figure 1 therefore also represent the detector
strategy for the triangular LRC. The dashed lines and shaded areas in the
figure will be discussed in a later section.

It is interesting to note that there are no discontinuicies in the transitor
trapezoidal strategy as W/C varies with respect to L. At each integral value
of L/(W/C). pairs of strategy points coalesce and then diverge, and in this
process the sum of the frequencies of the pair remains constant. This is
illustrated by the frequencies shown in figure 1 on both sides of L/(W/C) equal
to two, and to three.

V. The Game Value

The value of the game is given by

e
V——m fOI'OSZSZRl
C (Z-ZRI) C

VENET T TD (W) (R,R ) O 2Ry SRRy

The value of Z must be less than R1 + R, by definition. The game value is of
course independent of the particular strgtegy used by either player. Itis a
unique function of C. Rl' R2, and L, (Z and N are unique functions of Rl’ R2

and L). An optimal strategy is one which will prevent the opposing player

from achieving an expected payoff better than the game value, whatever strategy
the oppos..ug player may use. The strategies for detector and transitor, pre-
sented in the previous two sections, are optimal, but they are not necessarily
the only possible optimal strategies.

The game value is

(a) the minimum expected payoff for any transitor position if the detector
uses an optimal strategy,

(b) the maximum expected payoff for any detector position if the transitor
uses an optimal strategy, and therefore,
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(c) the expected payoff (i.e. the a priori detection probability on each play)
if both players are using optimal strategies.

Here a priori means before the players have chosen their positions for the play.
The choice of position is made by random selection from the distribution of
positions represented by the optimal strategy.

VI. Special Cases of the Trapezdidal LRC

It has been pointed out that the optimal transitor and detector strategies
given become identical for the special case of the triangular LRZ, that is when
the upper base of the trapezoid is zero. In this case, if either player uses this

optimal strategy, then the expected payoff is independent of the position selected
by the opposing player.

In the special case of the rectangular LRC, that is when the upper base of
the trapezoid is equal to the lower base, the positions in the given optimal strats
egy for the detector become as shown by the dashed lines in figure 1. In this
special case there is also another set of optimal strategies which have the same
properties as the previously given strategies for the triangular LRC, namely:

(a) Identical strategies for rransitor and detector, and

(b) Expected payoff independent of position for one player if other player
uses this special rectangular strategy.

In this special rectangular strategy the player chooses with equal probability
from among N + 1 channels. The channels are centered at

Z/2

Z/2+ W

Z/2 + 2W

Z/2 + NW
and the channel widths are

W . |z. w

-z -2
Within a channel the choice of position is uniformly distributed over the width
of the channel.

These channels are indicated by the shaded areas in figure 1.
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VII. Method of Derivation of Solutions

Since there is no known algorithm (at least none known t¢ the author) for
solving this continuous-matrix game, the method by which these solutions were
obtained should be of interest.

a The apparently simplest case, the rectangular LRC, was tired first.
This was done by substituting a discrete matrix for the continuous matrix,
that is by restricting the players to n discrete points along the line. By
letting the n frequencies for one player be unknowns and by setting the n
expected payoffs (corresponding to the n positions of the second player) equal
to an unknown constant, we have n linear equations and n + 1 unknowns. An
additional linear equation is given by the fact that the sum of the n frequencies
is unity. In this case of the rectangular LRC this set of simultaneous linear
equations yields a unique solution for the frequencies and for the unknown con-
stant, which is the game value. Since the matrix is symmetric, the solution
frequencies represent an optimal strategy for the other player as well. A
solution was found in this way for a number of different values of n and from
these solutions the continuous-matrix solution was induced. The solution so
obtained is the one given in section VI of this paper. It has been tested for
a number of cases of the rectangular LRC in a continuous matrix, but no
general proof of this solution has been done.

b Next the triangular LRC was solved by the same method. Again the
simultaneous linear equations could be solved to give the game value and
identical optimal strategies for both players. These were the strategies
shown in section III (for R1 = 0) and in section IV,

c. The general case of the trapezoidal LRC (general in the sense that
it includes the rectangular and triangular LRC's as special cases) does not
yield a solution by this method. The solution was found by induction from
the two special cases. Graphs of ganie value as a function of W/L for the
rectangular and triangular LRC's suggested that the trapezoidal game value
would be the one given in section V. It seemed of interest to see how the
players would fare if they employed the triangular strategy (expressed in
terms of W) against a trapezoidal LRC, giving them the benefit of using
the W corresponding to the trapezoid. For the transitor it was found in a
number of sample cases that he could by this means achieve a payoff func-
tion with a maximum equal to the suggested game value. The detector
however did not achieve a payoff function minimum equal to this value.

It was apparent that for the detector there is no advantage in going closer
than R1 to the end of the game line, so the triangular strategy was altered

by moving all positions a distance R1 from that end of the line from which

they were measured. All positions were moved, rather than just the end
ones, in order to preserve the spacing W/C, which seemed to be common
to all solutions. Frequencies were kept unaltered. A number of sample
cases showed that this altered strategy for the detector gave him a payoff
function minimum equal to the suggested game value, which showed that
this was the true game value for these sample cases, inasmuch as the
transitor strategy gave the same value for his payoff function maximum.
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VIII. General Proof of the Trapezoidal Solution

The sample cases of course did not constitute a general proof. The proof
was accomplished only by considering all possible values of Rl’ R2’ and L.

The full proof will not be given here, but the method will be fully specified.

It is possible to replace the continuous game matrix by an infinite discrcte
matrix. In testing the postulated transitor strategy, for example, the columns
of the infinite discrete matrix consist of the discrete transitor strategy points.
The matrix is infinite because the value of L has so far been left open. It will
be seen that any finite matrix will be a special case of the infinite matrix for
which the proof is obtained. There is still a continuum of rows, because the
expected payoff must now be determined for all possible detector positions to
show that the maximum is equal to the postulated game value. But this can
also be reduced to an infinite number of discrete positions by selecting only
those detector positions at which discontinuities occur in the slope of the ex-
pected payoff as a fuaction of the detector position. Then, because of the
linearity of the payoff function between slope discontinuities, the extremum
of the payoff at these discrete detector positions will also be the extremum
of the payoff for all detector positions. The determination of the discrete
detector positions is illustrated in table III. The Xi are the transitor strategy

TABLE 111
i = 2 3 4 S etc,
Xi =10 Z R1 + R2 Z+ R1 +R, 2R, + 2R,
y=Xi—R2 = | (0) Z—R2 R1 Z+R1 2R1+R2
y=Xi-R1 = 1(0) Z-R, R, Z+R, R, +2R,
y=Xi +R1 = R1 Z +R1 2Rl+f_{2 Z+2R1 +R2 3R1 +2R2
y=Xi +R2 = R2 Z +R2 R1+2R2 Z+R1 +2R2 2R1 -l-3R2

points starting from one end of the line. Notice that Z = L - NW/C is the last
strategy point measured from the other end of the line as the strategy is defined
in section IV. This point is bound to lie between X1 and X, because

3
0<Z<W/C= R1 + R2 by definition (section II). Discontinuities in the payoff
1 and Xii R2 for all
values of Xi because R1 and R2 are the X-y separations at which the trapezoidal

payoff function has slope discontinuities. Note that fori =1, Xi = R1 and

slope will occur at detector positions, y, given by Xi tR

Xi = R2 are negative which is not allowed so the discontinuity occures at y = 0,
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Note also that for i >3 we havey (Xi) =y (xl-Z) + Rl + R2. We therefore have

determined all of the discrete values of y without carrying the table to higher
values of i The resulting infinite discrete matrix is shown in table IV,
Frequencies of the transitor strategy points are indicated by fi. The elements

TABLE IV
THE INFINITE DISCRETE MATRIX

il= 1 2 3 4 5 6 etc.
{N+1)(N+2) fi = | N+l 1 N 2 N-1
Xi = 0 Z R1+R2 R1+R2+Z 2Rl+2R2 2R1+2R2+Z
y=0 0 “
Z- R2 Z-R2 R2
Z—Rl Z-Rl Rl 2R1+R2-Z
Rl Rl 2= Rl R2
Z+Rl Z+R1 Rl = R2 R2
R2 R)_ 2= R2 Rl Z+Rl
Z+R2 R2 Z- Rl Rl 2R1+R2—Z
2 —
2R1+R2 2R1+R2 Z Rl z Rl R2
Z+2R1+R2 Z+Rl Rl Z-R2 R2
Etc

of the matrix are not payoff values but are values of r; = Xi =y, which are the
separations which determine the payoff values, P(ri). Separations greater than
R2 have been omitted because we know that for such separations the payoff value

is zero. Now it only remains to find the expected payoff,
(==}
(Py = E P,

for each value of y.

In this we make use of the relationships,

fi + fi%--l =1/(N+1) , 1 odd
fi+fi+l=l/(N+2) , 1even
fi - fi+2 =1/(N+D)(N+2) , iodd

fi - fi+2 ==1/(N+1)N +2), ieven,

by means of which, it turns out, the frequencies can be factored out of (P) for all
values of y.

10
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Furthermore, we find that each value of y greater than those shown in
table IV produces an expected payoff identical to that for one of the y's in
table IV. We have already seen, in connection with the discussion of table III,
that each higher value of y, say Yy will be equal to one of the given values,

say y,. plus 2n integral multiple of (R1 + RZ)' Thus for each separation r;
associated with Vo ihere will be an identical r, associated with Y with X,
being equal to Xi plus the same integral multiple of (RI + RZ)'

yb=ya+n(Rl+R2)
xj=xi+n(Rl+R2)

rj=xj—yb=xi—ya=ri.

See, for example, y = Z + R1 andy = Z + 2R1 + R2 in table IV. And we see
from table Il that j =i + 2n. So, for Yy

By le = fP(xy)

2n ©

=2 fpe)+ £ £P(r) .
j=t 7V j=1420 1 )

Changing indices from j to i and recalling that P(rj) = P(ri) since rj =T

we have,
o

(B = _Z fi40n PO+ )‘: fi420 PO
i=1-2n i=1

The first summation i8 zero because P(ri) =0foricO (if ) 2 R2' which
means we must use such y, in generating <Pb> ). The second summation is
identical to <Pa> except that all indices of f have increased by 2n, an even
number. Thus all indices retain their evenness or oddness. Therefore,

<Pb> E <Pa7

11
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I'he vaiues of y > R'2 in table 1V are sufficient to generate <P> for all higher

values of y. Therefore, if we find the maximum <P> for the values of y in
table 1V, this will also be the maximum for all y in the infinite discrete matrix,
and since the expected payoff is a linear function of y between the discrete

values of y, the maximum so obtained is the maximum for all values in the
y continuum,

In finding <P> for each value of y in table 1V, it is necessary to consider
various different limits on the variables due to the slope discontinuities in
P(r). As a single example, iny = 0 the value of P(Z) depends upch whether
0<sZc< R1 or R1 sZs R2 or Z > R2 . In all, there are five different regions

of the variables and for each of these five regions it is necessary to find the
maximum among the <P > for all of the y in table IV. The five regions are
shown in figure 2.

NAN

n

Z/R2

FIG. 2: REGIONS OF VARIABLES IN TESTING TRANSITOR STRATEGY

ln each region the maximum <P> was found to be equal to the game value
postualted in section V,

C :
<P> o in regions 1, 2, and 3
C (Z—2R1)C
<p> = i
P max - N4l in 4 and S.

12
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These five regions cover all possible values of Z, R1 , and R2’ and therefore

cover all possible values of Rl' R2. and L.
To complete the proof we must show that

<p> . =v
min
for all possible transitor positions with the detector following the optimal

strategy given in section III. This is done in the same manner, but is slightly
more complicated in that:

(a) The last strategy point as measured from one end of the game line does
not always lie between the first two measured from the other end.

(b) The last strategy point as measured from one end of the game line is
not always a distance Rl i R2 from the next to last.

(c) There are eight regicns of the variables in which <P> must be
determined for each discrete value of x. These regions are shown in figure 3.

V17 P7 7227777727777
1127777777727 77777

2/ r 27777777

P o]
N

2772077200000 72777777/777727777
S II777 7727772777227 77777777777
L IIV 7P 7727777772077 7777777777,

777/777
177727277
17777777

N

FIG. 3: REGIONS OF VARIABLES IN TESTING DETECTOR STRATEGY

13
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Following the same procedure as was described for the test of the transitor
strategy, it is found that among all transitor positions:

/ — & !
\P> min - N+l 0 regions A, B, C.D,E, and F

\P’) min - N+1 - (N+1)(N+2)(R2—R;) for G and H,

which completes the proof.

14



